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MEASURE PROBLEM ON CONJUGATION LOGICS

MARJAN MATVEJCHUK1

Abstract. In the paper we give a classification of von Neumann algebras in complex Hilbert

space with conjugation operator J, study J-projections from von Neumann J-algebras of type

(A) and (B), and discuss some of the measure problems on conjugation logics.
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1. Introduction

In [5] (see also [11]) the problem of construction of probability theory for quantum mechanics

is posed. One of the basic problems related to the propositional calculus approach to the

foundations of quantum mechanics is the description of probability measures (called states in

physical terminology) on the set of experimentally verifiable propositions regarding a physical

system. The set of propositions form an orthomodular partial ordered set, where the order is

induced by the relation of implication, and called a quantum logic.

Many papers are devoted to quantum logic. A quantum logic [31] is a set L endowed with

a partial order ≤ and a unary operation ⊥ such that the following conditions are satisfied (the

symbols ∨, ∧ denote the lattice-theoretic operations induced by ≤):

(i) L possesses a least and a greatest element, 0 and I, and 0 ̸= I;

(ii) a ≤ b implies b⊥ ≤ a⊥ for any a, b ∈ L;

(iii) (a⊥)⊥ = a for any a ∈ L;

(iv) if {ai}i∈X is a finite subset of L such that ai ≤ a⊥j for i ̸= j, then supremum ∨i∈Xai
exists in L.

(v) if a, b ∈ L and a ≤ b, then b = a ∨ (b ∧ a⊥).

Sometimes the axioms (iv) and (v) are replaced by:

(iv′) if a ≤ b⊥ then there exist a ∨ b;

(v′) if a, b ∈ L and a ≤ b, then there exist c ≤ a⊥ such that b = a ∨ c.

Algebraically, quantum logics are called orthomodular partially ordered sets (or, shortly,

orthomodular posets). A logic L is neither distributive nor a lattice in general. Two elements

a, b ∈ L are called orthogonal if a ≤ b⊥. We will denote the orthogonality of a, b by the symbol

a ⊥ b.

Let (ai)i∈I ⊂ L be a set of mutually orthogonal elements. Assume that there exists supremum

(=a) of the family {ai}. We write a =
∑

i ai. The representation a =
∑

i ai is said to be

decomposition of a.
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A mapping µ : L → C is said to be a measure if µ(a) =
∑

i∈X µ(ai) for any decomposition

a =
∑

i ai. Here, the convergence of an uncountable family of summands means that there

exists a countable set of nonzero terms in the family and the usual series with these summands

converges absolutely. A nonnegative measure µ is said to be probability measure (=state) if

µ(I) = 1.

An important example of a quantum logic is the set B(H)or of all orthogonal projections

on a Hilbert space H. The problem of the construction of a quantum field theory sometimes

leads to an indefinite metric space [6], [30]. In the indefinite case, the set of all J -orthogonal

projections serves to be an analog to the logics B(H)or. In construction of measure theory on

logics of projections it is important to know the properties and the structure of projections.

J -projections were extensively studied at [9-25].

In the present article we give a classification of von Neumann algebras in a Hilbert space

with conjugation operator J . We study J-projections from von Neumann J-algebra. We discuss

some of the measure problems on conjugation logics.

2. Measures on projections

Let us first formulate some known results about the measure on the projections. In the

book [5], Chapter XII (see Problem 110, page 371, and Problem 88, page 547, [in Russian]) the

problem of describing the measures on quantum logics of projections have been posed (see also

[11], p.122 [in Russian]).

Any bounded idempotent P ∈ B(H) is a projection on PH parallel to (I − P )H. Thus P

is a skew projection, in general. Let L be a logic of projection with the ordering P ≤1 Q iff

PQ = QP = P , orthogonality relation P ⊥ Q iff PQ = QP = 0, and orthocomplementation

P⊥ = I − P .

A measure µ is said to be regular measure if there exists trace-class operator A such that

µ(P ) = tr(AP ) for all P ∈ L. Let H be a real or complex Hilbert space with the inner product

(·, ·).

2.1. An orthogonal case. An important example of quantum logic is the set B(H)or of all

orthogonal projections of a Hilbert space H. The remarkable Gleason’s theorem says.

Theorem 2.1 [8]. Let H be a Hilbert space dimH ≥ 3 and let µ : B(H)or → [0, 1] be a

probability measure (=state). Then there exist unique nonnegative trace-class operator A such

that

µ(P ) = tr(AP ) for all P ∈ B(H)or.

By Gleason’s theorem, any real or complex measure on B(H)or, dimH = ∞, is a linear

combination of probability measures. Thus the class of probability measures is a major class of

measures on orthogonal projections. First generalization of Gleason’s Theorem on von Neumann

and on Jordan algebras of bounded operators in a Hilbert space was given in the papers [13]-[15].

Another direction of generalization of Gleason’s theorem cam be seen in the paper [3].

2.2. An indefinite case. The problem of construction of a quantum field theory leads to the

indefinite metric spaces (=Krein space, =J -space) [30], [6]. In this case, the set B(H)J of all

J -orthogonal projections serves as an analog to the logic B(H)or. In the paper [20] we show

that any unitary self-adjoint logic is a sum of logics of the type B(H)or and type B(H)J . We

need some definitions.
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2.3. Some general properties on Krein spaces. The following terms and properties are

taken from the book [2, 4]. Let H be a linear space over L where L = R or = C. The function

[·, ·] : H ×H → L, x,y ∈ H is said to be an indefinite metric if:

1) [x, y] = [y, x], and 2) [αx+ βy, z] = α[x, z] + β[y, z], x, y, z ∈ H, α, β ∈ L.
The space H with an indefinite metric is said to be a Krein space if there are two nonzero

subspaces H+, H− ⊂ H such that:

1) H = H++H−, 2) [x, y] = 0, x ∈ H+, y ∈ H−, 3) H+ is a Hilbert space with respect to the

inner product [·, ·], and H− is a Hilbert space with respect to −[·, ·]. Note by 3), H+∩H− = {0}.
The representation H = H+ +H− is said to be a canonical decomposition of H and denoted

by H = H+[+̇]H−. Note that for any Krein space there are infinite set of the canonical

decompositions [4]. Let H = H+
1 [+̇]H−

1 be an another decomposition. Then dimH+ = dimH+
1 ,

dimH− = dimH−
1 .

The cardinal number κ = min{dimH+, dimH−} is said to be the indefinite rank of H. The

Krein space H is said to be Pontryagin space and denote by Πκ if κ < +∞.

There is another approach to the definition of Krein spaces. Let us present this approach.

Let H be a Hilbert space. Fix a self-adjoint unitary operator J , J ̸= ±I on H. There exists

unique orthogonal projections Q+, Q− such that J = Q+ −Q−. (Without loss of generality we

may assume that dimQ+ ≤ dimQ−.) The space H with respect to the product [x, y] := (J x, y),

x, y ∈ H is an indefinite metric space (=Krein space) [4].

Let B(H)pr be the set of all bounded idempotents (=projections) on H. Let P ∈ B(H)pr and

let [Px, y] = [x, Py], x, y ∈ H. The projection P is said to be J -projection. Any one-dimensional

J -projection has the form [x, x][·, x]x, where x ∈ H and [x, x] = ±1. A J -projection P is said

to be positive (negative) if [Px, x] ≥ 0 ([Px, x] ≤ 0, respectively), ∀x ∈ H. Let us denote by

B(H)J (by B(H)J+ , B(H)J−) the set of all J -projections (of all positive, negative, respectively,

J -projections). Note that any projection P ∈ B(H)J is representable (not uniquely!) in the

form P = P+ + P−, where P+ ∈ B(H)J+ , P− ∈ B(H)J− .

The logic B(H)J is said to be hyperbolic logic.

A measure µ : B(H)J → R is said to be: indefinite if µ on B(H)J+ is non negative and on

B(H)J− is non positive; semi-trace measure if µ(P ) = cdim(P+) or µ(P ) = cdim(P−), for all

P , where c ∈ R; Hermitian if µ(P ) = µ(P ∗) for all P ; skew Hermitian if µ(P ) = −µ(P ∗) for

all P . Note that the function µ∗(P ) := µ(P ∗) for all P is the measure also and µ is the sum

µ = 1/2(µ+ µ∗) + 1/2(µ− µ∗) of Hermitian and skew Hermitian measures. If µ is a probability

measure and µ2(P ) = µ(P ) for all P then µ is said to be two-valued probability measure.

Theorem 2.2 [18]. Let µ : B(H)J → [0, 1] be a probability measure. Then µ is a sum of

semi-trace measures.

Two-valued probability measures are connected with the problem of hidden variables in quan-

tum mechanics (see [10]). Let us present some result in this direction.

Corollary 2.1. Let H, dimH ≥ 3 be a real or complex Krein space. A two-valued probability

measure on B(H)J exists if and only if H is the Pontryagin space with the indefinite rank one

(i.e H = Π1).

Let H = Π1. Any two-valued probability measure µ : P → {0, 1} has the following property :

if dimH+ = 1 then µ(P ) = tr(P+); if dimH− = 1 then µ(P ) = tr(P−) for all P ∈ B(H)J .

There is an indefinite version of Gleason’s Theorem.

Theorem 2.3. [16]. Let dimH ≥ 3, and let µ : B(H)J → R be an indefinite measure. Then

there exist a J -self-adjoint trace-class operator T and a semi-trace measure µ0 such that

µ(P ) = tr(TP ) + µ0(P ) for all P ∈ B(H)J .
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Moreover, if dimQ+H and dimQ−H are equal to +∞, then µ0(·) ≡ 0 and the operator T is

J -non negative.

Theorem 2.4. generalizes the theorem on the indefinite measures. We will use Theorem 2.4.

for the formulation of Problem 2.1.

Theorem 2.4 [17]. Let µ : B(H)J → R be a measure on a infinite-dimensional Krein space

H, dimQ+H = dimQ−H. Then there exists a J -self-adjoint trace-class operator T such that

µ(P ) = tr(TP ) for all P ∈ B(H)J .

Note that: i) Let a measure µ from Theorem 1.5 be a Hermitian measure. Then tr(T ∗p) =

tr(Tp∗) = µ(p∗) = µ(p) = tr(Tp) for all p ∈ B(H)Jc. Thus the operator T may be chosen as

self-adjoint.

ii) Let a measure µ from Theorem 1.5 be a skew-Hermitian measure. By the analogy, the

operator T may be chosen as skew self-adjoint.

The indefinite version of Gleason’s theorem shows that any real or complex measure on

B(H)J , dimH = ∞ is a linear combination of indefinite measures. It is clear that on the

logics B(H)or and B(H)J there exist regular real measures.

2.4. Measure on the skew projections. The following version of Gleason’s theorem is true

for the logic B(H)pr.

Theorem 2.5. [29]. Let dimH = ∞ and µ : B(H)pr → R be a measure. Then there exists a

trace-class operator T such that µ(P ) = ℜtr(TP ) for all P ∈ B(H)pr.

The following assertion was formulated without the proof in [29] (for a proof see [27]).

Theorem 2.6. Probability measure on B(H)pr exists iff dimH < ∞. If µ : B(H)pr → [0, 1]

is a probability measure and 3 ≤ dimH ≡ n, then µ(P ) = 1
ntr(P ) for all P .

2.5. Measure on H with conjugation operator. Let H be a complex Hilbert space and let

J be a conjugation operator on H (see [1], Section 50), i.e., 1) J2 = I, 2) (Jx, Jy) = (y, x), for

all x, y ∈ H. Note by 1), and 2), J(λx+βy) = λJx+βJy, for all λ, β ∈ C and for all x, y ∈ H.

Put < x, y >:= (Jx, y) for all x, y ∈ H. It is clear that < Ax, y >=< x,A#y > for all x, y ∈ H

iff A# = JA∗J . Put B(H)Jc = {P ∈ B(H)pr : P = P#} and Π := B(H)Jc ∩B(H)or.

Let dimH = +∞ or dimH := 2m < +∞. Then for any conjugation operator J there

exists (non unique!) orthogonal projection F such that F + F# = I. The logic B(H)Jc

(B(H)Jc := {P ∈ B(H)Jc : PF = FP}) is said to be conjugation logic of type (A) (of type

(B), respectively).

At the present time there is no complete description of measures on conjugation logic. Let us

present the main known results.

Theorems 2.2, 2.6 and 2.7. shows that the class of probability measures on the logics B(H)J ,

B(H)pr, and on B(H)Jc is extremely simple.

Theorem 2.7. [27]. i) A probability measure on the conjugation logics B(H)Jc and B(H)Jc

exists if and only if dimH < +∞.

ii) Let n ≡ dimH < +∞. On B(H)Jc and on B(H)Jc there exists a unique probability

measure µ and

µ(P ) =
1

n
tr(P )

for all P ∈ B(H)Jc if dimH ≥ 3, and for all P ∈ B(H)Jc if dimH ≥ 6.

Note that for the conjugation logic of type (A) Theorem 1.8 was proved in [19]. By Theorem

2.5. and by structural properties of the projections from B(H)Jc we obtain the following
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Theorem 2.8. [27]. Let dimH = ∞, and let µ : B(H)Jc → R be a measure. Then there

exists a trace-class operator T such that µ(P ) = tr(TP ) for all P ∈ B(H)Jc.

Thus any real measure on B(H)Jc, dimH = ∞ is a regular measure.

Theorem 2.9. [21]. Let dimH = +∞ and let µ : B(H)Jc → R be a Hermitian measure.

Then

µ(P ) = ℜtr(AP ) for all P ∈ B(H)Jc.

Here A is an unique J-real self-adjoint trace-class operator such that µ(P ) = tr(AP ), ∀P ∈ Π.

If dimH = +∞ then on the logics B(H)pr and B(H)Jc regular real measures do not exist.

Note that, for any trace-class operator A there exists a projection P ∈ B(H)Jc such that

ℑtr(AP ) ̸= 0 (see [24]). Therefore any regular measure on B(H)Jc (and hence on B(H)pr) is a

complex measure. Note that on the logics B(H)or, B(H)pr, B(H)Jc, B(H)Jc if dimH ≥ 3 there

is no two-valued probability measure.

Now we shall formulate problems whose solution can solve Birkhoff’s problems on B(H)Jc for

skew Hermitian measure. We are interested in the following problem.

Problem 2.1. Does a certain analog of Theorem 2.9. hold for skew Hermitian measures on

B(H)Jc?

3. Some additional information

Information contained in this section may be useful for solution of Problem 2.1.

Now let H be a complex Hilbert space with the inner product (·, ·) and let S be the unite

sphere in H. Let us denote by linC{N} (by linR{N}) the complex (the real, respectively) linear

subspace generated by a subset N ⊆ H. Let N1, N2 ⊂ H. We write N1 ⊥ N2 if (x, y) = 0 for

all x ∈ N1, y ∈ N2.

It is clear that onH there exists an infinite set of conjugation operators. Let J be a conjugation

operator on H. A vector x ∈ H is said to be J-real if Jx = x. The vectors xℜ := 1
2(x+ Jx) and

xℑ := 1
2i(x − Jx) = −1

2(ix + Jix) are J-real, ∀x ∈ H and x = xℜ + ixℑ. Let Hℜ be the set of

all J-real vectors. It is clear that (x, y) = (Jx, Jy) = (y, x) for all x, y ∈ Hℜ and Hℜ is a real

Hilbert space with respect to the inner product (·, ·).
An operator A ∈ B(H) is said to be J-real if JAJ = A. Note that A is a J-real iff AHℜ ⊆ Hℜ

iff A∗ is a J-real operator. The set of all J-real operators is a real algebra.

Put < x, y >:= (Jx, y). An operator A ∈ B(H) is said to be J-self-adjoint, if < Ax, y >=<

x,Ay >, ∀x, y ∈ H. Hence A = A# iff AJ = JA∗. Any bounded J-self-adjoint idempotent

(=projection) P is called J-projection. Note that for any idempotent P ∈ B(H)pr there exists

a such conjugation operator J0 that P is a J0-projection [25].

3.1. Hyperbolic sub-logics of the logic B(H)Jc. Let P ∈ B(H)Jc. It is clear that:

P ∈ Π iff PHℜ ⊆ Hℜ iff the restriction of J on PH is a conjugation operator on the Hilbert

space PH.

Let E ∈ Π (0 ̸= E ̸= I). Let us denote HE ≡ linR{EHℜ ⊕ iE⊥Hℜ}. The set HE is a real

Hilbert space with respect to the product (·, ·). It is clear that H is equal to the direct sum

HE + iHE . Consequently, we have

Proposition 3.1. Any B ∈ B(HE) can be uniquely extended to a linear bounded operator

BH on H, (BH)∗ = (B∗)H , and if P is a projection in HE, then PH is a projection, too.

Denote by J the restriction of J to HE . Clearly J = (E − E⊥)/HE is a symmetry (i.e.

J
2
= I, J = J

∗
in HE . With respect to the product [x, y] ≡ (Jx, y), ∀x, y ∈ HE , the set HE is

a real Krein space, and J is a canonical symmetry with respect to the canonical decomposition
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HE = H+
E [+̇]H−

E , where H
+
E ≡ EHℜ and H−

E ≡ iE⊥Hℜ (see definitions [4]). The indefinite rank

of HE is equal to min{dimEH, dimE⊥H}.
Denote by PE the set of all bounded projections P ∈ B(HE) such that [Px, y] = [x, Py],

∀x, y ∈ HE . Clearly P ∈ PE implies PH ∈ B(H)Jc. Conversely, if Q ∈ B(H)Jc and QHE ⊆ HE ,

then Q/HE is a J-projection in the Krein space HE i.e. Q/HE = J(Q/HE)
∗J .

In [16] the logic PE is called a hyperbolic logic. Denote by P+
E (P−

E ) the set of all projections

P ∈ PE for which the subspace PHE is positive (i.e., ∀z ∈ PHE , z ̸= 0, [z, z] > 0) (respectively,

negative, i.e., ∀z ∈ PHE , z ̸= 0, [z, z] < 0). Note, that P ∈ P+
E iff JP ≥ 0 in HE , and P ∈ P−

E

iff JP ≤ 0. For instance, (., Jf)f ∈ P+
E , where f = αz + iβy, α, β ∈ R, α2 − β2 = 1, and

z ∈ EHE ∩ S, y ∈ E⊥HE ∩ S. It is clear that −(., Jg)g ∈ P−
E , where g = βz + iαy. Any

projection P ∈ PE is representable (not uniquely!) in the form P = P− + P+, where P− ∈ P−
E ,

P+ ∈ P+
E [4].

It is easy to prove the following

Proposition 3.2. For any projection P ∈ B(H)Jc, 0 ̸= P ̸= I there is a hyperbolic logic PE

such that P ∈ PE.

3.2. On a classification of von Neumann J-algebras in the space with conjugation

operator. In the paper [28] a classification of von Neumann algebras in space with an indefinite

metric was given. We offer a similar classification of von Neumann algebras in Hilbert space

with conjugation operator J [32].

Let M be a von Neumann algebra on H. (The definition and properties of von Neumann

algebras see, for instance [7]). Let us denote by Mpr (by Mor, MJc, Π) the set of all bounded

(orthogonal, J-self-adjoint, orthogonal and J-self-adjoint (and, hence, J-real), respectively) pro-

jections from M. Any one-dimensional projection: 1) from B(H)pr has the form (·, x)y, x,

y ∈ H, where (x, y) = 1; 2) from Π has the form (·, x)x, x ∈ Hℜ, (x, x) = 1. A von Neumann

algebra M in H is said to be a von Neumann J-algebra if A ∈ M implies A# ∈ M. Note that

for any conjugation operator J0 exists a von Neumann algebra, which is not a von Neumann

J0-algebra. Let M be von Neumann J-algebra. Then: i) its center Z (:= M∩M′) and M′ are

von Neumann J-algebras to; ii) the set ℜM of all J-real operators of M is a real von Neumann

algebra, i.e., ℜM ∩ iℜM = {0}, ℜM + iℜM = M. The logic MJc is said to be conjugation

logic.

Let P,Q ∈ B(H)pr. Put P <1 Q if PQ = QP = P . Let us denote by Ep the orthogonal

projection on PH. We will denote by Por the orthogonal projection on PH ∩ P ∗H. It is

clear that Por ≤1 Ep. Note, that the projection Por is the greatest orthogonal projection with

Por ≤1 P . If P ∈ B(H)Jc then Por ∈ Π (see [19]).

The orthogonal projection PA on {AH +A∗H} is said to be the cover of A, A ∈ B(H). A

projection P , P ̸= 0 is said to be a proper skew projection if Por = 0. Note that if P ̸= P ∗ then

Ps := P − Por is the proper skew projection.

Lemma 3.1. Let M be a commutative von Neumann J-algebra. Then there exists a unique

maximal (orthogonal) projection E ∈ Mor such that P ≤1 E, P ∈ Mor implies P = P#. In

addition there exists (non unique, in general!) a projection F ∈ Mor such that F +F# = I−E.

Proof. Note first that F + F# = I − E implies FF# = 0. The equality P = P# for all

P ∈ Mor implies E = I.

1) Let us suppose that P ̸= P# for some P ∈ Mor. Put R := PP# (<1 P ). Then R# =

(JPJ)P = PJPJ = R. In addition P# − R = J(P − R)J ̸= 0 and (P − R)(JPJ − R) =

PJPJ −R−R+R = 0, i.e. (P −R) ⊥ (J(P −R)J).
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2) Let us denote by ∆ the set of all systems {Pi} ⊂ Mor of mutually orthogonal projections

such that
∑

i Pi ⊥
∑

i P
#
i . With respect to the inclusion ∆ is a partially ordered set. By the

Zorn’s lemma, ∆ contains a maximal element {Qi}. Put F :=
∑

iQi and E := I − (F + F#).

By the definition, E = E#.

It is clear that if P ≤1 E, P ∈ B(H)or then P# ≤1 E. Let us suppose for the moment that

PP# ̸= P for some P ≤1 E. Then by step 1), there exist two orthogonal projections P , P#

with P + P# ≤1 E. We have a contradiction with the definition of the family {Qi}.
A commutative von Neumann J-algebra Z is said to be a type (A) algebra if P = P# for all

P ∈ Zor. Note that in this case any self-adjoint operator A is J-real operator.

A commutative von Neumann J-algebra Z is said to be a type (B) algebra if Z contains

a pair F , F# ∈ Zor such that F + F# = I. Note that F + F# = I implies FF# = 0, and

F# = F⊥.

A von Neumann J-algebra M is said to be of type (A) (type (B)) if its center Z is of type

(A) algebra (of type (B) algebra, respectively). Let F be the projection from definition of type

(B) algebra. Set B(H) := FB(H)F + F#B(H)F#. It is clear that B(H) (B(H)) is the type

(A) (the type (B), respectively) algebra. Note that P ∈ B(H)Jc iff P ∈ B(H)Jc and PF = FP .

3.3. Conjugation logics of projections. All J-projections fromB(H)Jc are called J-projections

of type (A).

Proposition 3.3. Let (., x)y be a nonzero projection. Then (., x)y ∈ B(H)Jc iff (., x)y =

(., Jy∗)y∗, where y∗ = (y, Jy)−
1
2 y.

Proof. Let (., x)y ∈ B(H)Jc. Then

(., x)y = J((·, x)y)∗J = J((., y)x)J = (J., y)Jx = (y, J.)Jx = (., Jy)Jx,

where y = αJx. Hence x = (α)−1Jy. We have 1 = (y, x) = α−1(y, Jy). Hence (y, Jy) ̸= 0 and

(., x)y = α−1(., Jy)y = (y, Jy)−1(., Jy)y = (., Jy∗)y∗.

Conversely, let (., x)y = (., Jy∗)y∗. Then

J((., x)y)∗J = J((., y∗)Jy∗)J = (J., y∗)JJy∗ = (y∗, J.)y∗ = (., Jy∗)y∗ = (., x)y.

Hence (., x)y ∈ B(H)Jc. �
A vector y ∈ H is said to be a projection type vector if (., Jy∗)y∗ ∈ B(H)Jc. Let us denote by

Hp the set of all projection type vectors. Note that Hℜ\{0} ⊂ Hp. Denote by py the projection

(., Jy∗)y∗ (= (y, Jy)−1(., Jy)y), ∀y ∈ Hp.

Remark 3.1. Let y ∈ H. Then

i) y ̸∈ Hp iff (y, Jy) = 0 iff (yℜ, yℑ) = 0 and ∥ yℜ ∥=∥ yℑ ∥;
ii) (·, Jy∗)y∗ ∈ Π iff y∗ ∈ Hℜ;

iii) (·, Jy)y ∈ B(H)Jc iff (yℜ, yℑ) = 0 and ∥ yℜ ∥2 − ∥ yℑ ∥2= 1;

iv) Let py = (·, Jy)y ∈ B(H)Jc. Then pJy = (py)
∗ and py ̸= pJy iff yℑ ̸= 0;

v) (x, Jy) = 0 iff (xℜ, yℜ) = (xℑ, yℑ) and (xℜ, yℑ) = −(xℑ, yℜ).

Proof. The properties i) and ii) are obvious. iii) Let (·, Jy)y ∈ B(H)Jc. Then 1 = (y, Jy) =∥
yℜ ∥2 +2i(yℜ, yℑ)− ∥ yℑ ∥2. Hence (yℜ, yℑ) = 0 and ∥ yℜ ∥2 − ∥ yℑ ∥2= 1.

Conversely, let (yℜ, yℑ) = 0 and ∥ yℜ ∥2 − ∥ yℑ ∥2= 1. Then (y, Jy) = 1. Hence (., Jy)y is a

projection. Furthermore, J((·, Jy)y)∗J = J((·, y)Jy)J = (·, Jy)y. Thus (·, Jy)y ∈ B(H)Jc.

Put B := (·, Jy)y − (·, y)Jy. A simple calculation shows that B∗B = 2[∥yℑ∥2(·, yℜ)yℜ +

∥yℜ∥2(·, yℑ)yℑ]. By iii), B ̸= 0 iff yℑ ̸= 0. This prove iv).

The property v) is verified directly. �. �
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Let x ∈ H be such that (·, Jx)x ∈ B(H)Jc. The vector x is said to be generator vector for px.

Proposition 3.4. For any P ∈ B(H)Jc (P ̸= 0) we have PH ∩ Hp ̸= {∅}, and for any

y ∈ PH ∩Hp the inequality (·, Jy∗)y∗ ≤1 P holds true.

Proof. Obviously the proposition is true if P is a one-dimensional projection. Let P ∈ B(H)Jc

and dimPH ≥ 2. Assume on the contrary that PH ⊂ H\Hp. Let x, y ∈ PH. By Remark 2.5

i),

0 = (x+ y, J(x+ y)) = (x, Jx) + (y, Jx) + (x, Jy) + (y, Jy) =

= (y, Jx) + (x, Jy) = 2(y, Jx).

Hence the subspaces PH and JPH (= JJP ∗JH = P ∗JH = P ∗H) are orthogonal. Thus

0 = (Px, P ∗z) = (Px, z) = (x, z), ∀z ∈ H. This means that P = 0. We have got a contradiction.

Hence PH ∩Hp ̸= {∅}. The inequality (., Jy∗)y∗ <1 P is obvious. �. �

Corollary 3.1. The logic B(H)Jc is atomic.

The following result was proved in [25].

Proposition 3.5. Let P ∈ B(H)pr, P ̸= 0, and let Q+ (Q−) be the cover of the positive

= (P + P ∗)+ (the negative = (P + P ∗)−, respectively) part of P + P ∗. Then:

1) P ≤1 (Q
+ +Q−).

2) 2Q+PQ+ = (P + P ∗)+, Q
+PQ+ ≥ Q+ and 2Q−PQ− = −(P + P ∗)−.

Let Q−PQ+ = U |Q−PQ+| be the polar decomposition of Q−PQ+. Put X := Q+PsQ
+,

Y := Q−PsQ
−, P (X) := {a0PX +

∑n
i=1 aiX

i : n ∈ N, ai ∈ C ∀i}, P h(X) := {P ∈ P (X) : P =

P ∗}, P (Y ) := {a0PY +
∑n

i=1 aiY
i : n ∈ N, ai ∈ C ∀i}, P h(Y ) := {P ∈ P (Y ) : P = P ∗}. By

X ≥ Q+, we have PX = Q+.

Put V := U
i . In [19] it is proved that: If P ∈ MJc then Q+, Q−, X and V are J-real

operators from M.

The following assertion is also true:

Let P = Ps then UP (X)U∗ = P (Y ). (Hence UU∗ = Q−, U∗U = Q+, and PY = Q−).

Thus, we have the useful equality (see [25])

P = Ps = X + i(V (X2 −X)1/2 + (X2 −X)1/2V ∗) + V (Q+ −X)V ∗.

3.4. J-projections of type (B). All J-projections from type (B) von Neumann J-algebra M
are called J-projections of type (B). Type (B) projections were studied in [26]. Let F be the

projection from definition of type (B) algebra. We have already mentioned that B(H) is a von

Neumann algebra of type (B). It is clear that B(H)Jc ⊂ B(H)Jc. Let us denote by LM
F the set

of all projections from FMF . Then MJc = {q + Jq∗J : q ∈ LM
F }.

Theorem 3.1. [26]. Let R be a J-projection of type (B). Then there is a J-projection

D ∈ B(H)Jc such that R = D + JDJ and covers of D and JDJ are mutually orthogonal.

4. Reduction of the measure problem 2.1. to three-dimensional spaces

Note that the main part of the proof of Theorem 2.1. and Theorems 2.3. and 2.4. is to prove

the theorems for the real three-dimensional case. In this section, we show how the Problem 2.1.

can be reduced to the real three-dimensional case.

LetH, dimH = ∞, be a Hilbert space with conjugation operator J , let S = {x ∈ H : ∥x∥ = 1}
be the unite sphere from H, and let µ : B(H)Jc → R be a skew Hermitian measure. Let

px = (·, Jx)x ∈ B(H)Jc be a one-dimensional skew projection (see Proposition 2.4). Thus

xℜ ̸= 0, xℑ ̸= 0 and (xℜ, xℑ) = 0 and ∥ xℜ ∥2 − ∥ xℑ ∥2= 1 (see Remark 2.5 ii), iii)). Let E ∈ Π

be such that i) xℜ ∈ EHℜ, xℑ ∈ E⊥Hℜ and ii) dimEH = ∞, dimE⊥H = ∞. Let PE be the
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hyperbolic sub logic of projection from Section 1.§2. Let µE be the restriction of the measure µ

on to PE . It is clear that µE is the skew Hermitian measure on PE . By Theorem 1.5, there is a

skew-adjoint and J-self-adjoint trace-class operator T such that µE(p) = tr(Tp) ∀p ∈ PE . Thus

µ((·, Jx)x) = µE((·, Jx)x)

= tr(T [(·, xℜ)xℜ + i(·, xℜ)xℑ + i(·, xℑ)xℜ − (·, xℑ)xℑ])
= tr(T [i(·, xℜ)xℑ + i(·, xℑ)xℜ]).

It is clear that (·, xℜ)xℑ+(·, xℑ)xℜ) is the skew Hermitian part (=psx) of the projection px. Put

F ((·, xℜ)xℑ + (·, xℑ)xℜ) := tr(T [i(·, xℜ)xℑ + i(·, xℑ)xℜ]) (=µ((·, Jx)x)). By the definition,

F (−[(·, xℜ)xℑ + (·, xℑ)xℜ]) = µ(((·, Jx)x)∗) (1)

= −µ((·, Jx)x) = −F ((·, xℜ)xℑ + (·, xℑ)xℜ).
Put a2 = ∥xℜ∥2, b2 = ∥xℑ∥2 and e = xℜ/∥xℜ∥, e⊥ = xℑ/∥xℑ∥. Thus (·, xℜ)xℑ + (·, xℑ)xℜ) =
ab[(·, e)e⊥ + (·, e⊥)e]. It is clear that {ab : a2 − b2 = 1} = R and there exists z ∈ H such that

(·, Jz)z ∈ B(H)Jc, psz = [(·, e)e⊥ + (·, e⊥)e]. For any self-adjoint operator c[(·, e)e⊥ + (·, e⊥)e]
there exist vectors ϕ, ϕ⊥ ∈ S∩Hℜ, (ϕ, ϕ

⊥) = 0 such that [(·, e)e⊥+(·, e⊥)e] = [(·, ϕ)ϕ−(·, ϕ⊥)ϕ⊥].

Put F (0) = 0. Thus by (1), we have the equality

F (c[(·, ϕ)ϕ− (·, ϕ⊥)ϕ⊥]) = cF ([(·, ϕ)ϕ− (·, ϕ⊥)ϕ⊥]) ∀c ∈ R (2)

for any vectors ϕ, ϕ⊥ ∈ S ∩Hℜ, (ϕ, ϕ
⊥) = 0.

Let x, y be generators. Direct calculations show that pxpy = 0 (i.e. px ⊥ py) iff (x, Jy) = 0.

In this case we say that the generators x, y are J-orthogonal. Fix R ∈ Π, dimRH = 3. We have

already noted that the restriction of J onto RH is also a conjugation operator. Let x1, x2, x3 ∈
RH be mutually J-orthogonal generators in RH. Taking into account that px1 + px2 + px3 = R

we have

µ(px1) + µ(px2) + µ(px3) = µ(R) = 0 and psx1
+ psx2

+ psx3
= 0.

Let psxi
= aibi[(·, ϕi)ϕi − (·, ϕ⊥

i )ϕ
⊥
i ] (= aibi[(·, ei)e⊥i + (·, e⊥i )ei]), i = 1, 2, 3. Then

a1b1[(·, ϕ1)ϕ1 − (·, ϕ⊥
1 )ϕ

⊥
1 ] + a2b2[(·, ϕ2)ϕ2 − (·, ϕ⊥

2 )ϕ
⊥
2 ]

= −a3b3[(·, ϕ3)ϕ3 − (·, ϕ⊥
3 )ϕ

⊥
3 ]. (3)

By (3),

a1b1F ([(·, ϕ1)ϕ1 − (·, ϕ⊥
1 )ϕ

⊥
1 ]) + a2b2F ([(·, ϕ2)ϕ2 − (·, ϕ⊥

2 )ϕ
⊥
2 ]) =

µ(px1) + µ(px2) = −µ(px3) = µ(p∗x3
) = a3b3F ([(·, ϕ⊥

3 )ϕ
⊥
3 − (·, ϕ3)ϕ3]) =

= F (a1b1[(·, ϕ1)ϕ1 − (·, ϕ⊥
1 )ϕ

⊥
1 ] + a2b2[(·, ϕ2)ϕ2 − (·, ϕ⊥

2 )ϕ
⊥
2 ]).

Thus

a1b1F ([(·, ϕ1)ϕ1 − (·, ϕ⊥
1 )ϕ

⊥
1 ]) + a2b2F ([(·, ϕ2)ϕ2 − (·, ϕ⊥

2 )ϕ
⊥
2 ]) =

= F (a1b1[(·, ϕ1)ϕ1 − (·, ϕ⊥
1 )ϕ

⊥
1 ] + a2b2[(·, ϕ2)ϕ2 − (·, ϕ⊥

2 )ϕ
⊥
2 ]) (4)

if a1a2(e1, e2) = b1b2(e
⊥
1 , e

⊥
2 ) and a1b2(e1, e

⊥
2 ) = −b1a2(e

⊥
1 , e2).

Note that, by Remark 2.5.v), the assertion: ”The generators x1, x2, where xj = ajej+ibje
⊥
j , j =

1, 2 are J-orthogonal” is equivalent the following: ”a1a2(e1, e2) = b1b2(e
⊥
1 , e

⊥
2 ) and a1b2(e1, e

⊥
2 ) =

−b1a2(e
⊥
1 , e2)”.

We may identify RH with C3. Here C3 is the unitary (= Euclidean) space with the usual

scalar product (·, ·). For any vector θ = (θ1, θ2, θ3) ∈ C3 put θℜ := (ℜθ1,ℜθ2,ℜθ3) and θℑ :=

(ℑθ1,ℑθ2,ℑθ3). It is clear that θ = θℜ + iθℑ. We may identify the conjugation operator J with

the conjugation operator J1 : C3 → C3. Here J1(ϕ1, ϕ2, ϕ3) := (ϕ1, ϕ2, ϕ3), ∀ϕ1, ϕ2, ϕ3 ∈ C.
Thus RHℜ = R3. Let S2 = {x ∈ R3 : ∥x∥ = 1} be the unit sphere from R3. Let us denote by B
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the set of all self-adjoint operators of the form c[(·, e)e− (·, e⊥)e⊥], here c ∈ R, and e, e⊥ ∈ S2,

(e, e⊥) = 0.

Problem 4.1. Does the function F (·) on B with the properties (2), (4) admit an extension

to a linear functional on the set of all real self-adjoint operators on R3?

The positive answer to the Problem 2 would imply the solution of Problem 4.1. in the infinite

dimensional space. It is interesting to proof the following weak version of Problem 4.1.

Problem 4.2. Does the equality

F ((·, e1)e1 − (·, e2)e2) + F ((·, e2)e2 − (·, e3)e3) = F ((·, e1)e1 − (·, e3)e3)

hold for any mutually orthogonal vectors e1, e2, e3 ∈ S2?

To solve the Problem 2.1. in continuous von Neumann J-algebras it is sufficient to give a

positive answer to Problem 4.2.

Problem 4.3. Under what necessary and sufficient conditions for the skew hermitian measure

µ the formula µ(p) := ℜtr(Ap), ∀p will be true? Here A is an appropriate trace-class operator.
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